
In Hardware We Trust? From TPM to Enclave
Computing on RISC-V

Emmanuel Stapf
Technical University of Darmstadt

Darmstadt, Germany
emmanuel.stapf@sanctuary.dev

Patrick Jauernig
Technical University of Darmstadt

Darmstadt, Germany
patrick.jauernig@sanctuary.dev

Ahmad-Reza Sadeghi
Technical University of Darmstadt

Darmstadt, Germany
ahmad.sadeghi@trust.tu-darmstadt.de

Ferdinand Brasser
Technical University of Darmstadt

Darmstadt, Germany
ferdinand.brasser@sanctuary.dev

Abstract—System-on-Chip platforms have been increasingly
extended with trusted computing functionality to provide strong
protection for sensitive software applications through enclaves
that only require trust in the hardware and minimal software
components. However, the deployed enclave architectures are still
suffering from various shortcomings such as the lack of secure
I/O, or being vulnerable to side-channel attacks. Thus, recent
research works propose new enclave architectures with more
comprehensive threat models and advanced security features. A
majority of these solutions is being developed on the open RISC-
V architecture. In this paper, we present a brief overview of
the RISC-V-based enclave architectures, discuss their features,
limitations and open challenges.

Index Terms—RISC-V, Trusted Execution Environment (TEE),
Enclave, Side-Channel Security

I. INTRODUCTION

For decades we have been witnessing a never-ending arms
race on modern software between (run-time) attacks and
corresponding defenses. Defense approaches range from (fine-
grained) address space layout randomization to control-flow
integrity (CFI) or code-pointer integrity (CPI), and data-flow
integrity. Each of these techniques has its own pros and
cons, but all of them struggle to find the adequate secu-
rity and efficiency trade-off. In addition, modern software is
becoming more and more complex, and hence, the attack
surface is growing steadily. In particular, large code bases
such as operating systems (OS), have already been shown to
be vulnerable to various attacks, and thus, are unsuitable to
serve as an underlying Trusted Computing Base (TCB) for
protecting sensitive services. In this context, Trusted Com-
puting technology has promised significant improvement in
protecting modern software by integrating hardware-assisted
security primitives and components tightly into the System-on-
Chip (SoC) and hardware platforms. This ranges from Trusted
Platform Modules (TPMs) [29] to hardware instruction exten-
sions for CFI [11], capability systems [14], [33] and Trusted
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Execution Environments (TEEs). TEE architectures commonly
leverage hardware and software security primitives to enable
isolated environments, usually called enclaves. Enclaves are
used to isolate the execution of sensitive services from all other
software, including the OS, and thus, protect them even against
strong software adversaries. Only a small software TCB, which
configures the underlying hardware security primitives of the
system and manages these enclaves, is inherently trusted.

Enclave-based security architectures have been proposed
for a variety of computing platforms, ranging from resource-
constrained microcontrollers and embedded systems, such
as Sancus [24], TyTAN [4], TrustLite [19], Sanctum [10],
Keystone [20] TIMBER-V [31], or CURE [2], to high-
performance computing systems, e.g., industry solutions like
Intel SGX [16], AMD SEV [17], ARM TrustZone [1], or
academic solutions such as Sanctuary [5]. While industry
solutions successfully enable a new level of protection against
a more privileged software adversary, they often lack important
features, such as secure I/O or protection mechanisms against
sophisticated software attacks, e.g., cache side-channel attacks,
which are typically not included in their threat models.

The advent of open-source hardware and the open architec-
ture RISC-V initiated a new line of research and an oppor-
tunity to explore, scrutinize and design enclave architectures
across the full stack, both hardware and software. This brought
rise to a number of academic solutions such as Sanctum [10],
Keystone [20],TIMBER-V [31] and CURE [2], which attempt
to address the shortcomings of existing industry solutions, and
steer the future for upcoming industry solutions.

In this paper, we provide an overview of recently proposed
RISC-V enclave architectures, their advantages and limita-
tions, and conclude with open challenges for future research
in this exciting and foundational research area.

II. BACKGROUND ON ENCLAVE SECURITY
ARCHITECTURES

In the following section, we give an overview of enclave
security architectures, their unifying characteristics and the



typically assumed adversary model against which they protect.
Overview. In Figure 1, a generic enclave security architecture
is depicted. Enclave security architectures are deployed on
systems which typically run a commodity OS that manages
various applications. Most of the applications (Apps) are not
severely security-sensitive and thus, the OS security mech-
anisms are considered enough to protect those applications.
However, some applications (or services) on the system might
be highly security-sensitive, e.g., because they process highly
privacy-sensitive or IP-relevant data. The goal of an enclave
architecture is to protect these sensitive services even in
scenarios where the OS was compromised by an adversary.

On an abstract level, the enclave architecture achieves the
protecting of sensitive services by providing isolated execution
environments, called enclaves, as shown in Figure 1. The
protection and isolation of the enclaves is backed by hardware-
assisted security mechanisms which are implemented at the
hardware level of the underlying platform. Depending on
the specific enclave architecture, these mechanisms can be
implemented at different locations, e.g., at the processor [10]
or the system bus [2]. In all cases, the security mechanisms
must be configured by a trusted software component (shown
as Trusted SW in Figure 1) which typically represents the
highest-privileged software running on the system. In some
cases, e.g., Intel SGX [16] or AMD SEV [17], the trusted
software component is implemented in microcode. By con-
figuring the security mechanisms, the trusted software com-
ponent effectively assigns system resources to enclaves, e.g.,
memory, processor cores or caches, depending on the specific
capabilities of the enclave architecture.
Adversary Model. One of the key unifying characteristic
of enclave security architectures is that they all assume a
strong software adversary who is able to compromise the
complete commodity software stack, including the OS kernel
and even the hypervisor, if available. The adversary is assumed
to spawn malicious processes and even malicious enclaves.
Moreover, the adversary is capable of using system peripherals
to perform Direct Memory Access (DMA) attacks [22]. In
contrast to enclave architectures from industry [1], [16], [17],
most academic solutions also consider the important attack
class of cache side-channel attacks [6], [25], [26].

The adversary is not able to compromise the trusted soft-
ware component which represents the Trusted Computing Base
(TCB) of the system, together with the underlying hardware
which is assumed to be correct and trusted. Denial-of-service
attacks are typically not considered in enclave architectures
since an adversary in control of the OS can trivially shut
down the complete system. Physical attacks performed in
close proximity to the system, e.g., fault injection attacks [3]
or physical side-channel attacks [18], [21], are in general
considered as out-of-scope for enclave architectures. However,
some architectures, e.g., Intel SGX [16] or AMD SEV [17],
provide a memory encryption engine which protects against
simpler physical attacks such as cold-boot attacks [15] or
attacks where an adversary reads out the content of the DRAM,
e.g. by snooping the memory bus. An enclave architecture

does not protect from software-exploitable vulnerabilities in
the enclave code, instead, it prevents that their exploitation
leads to a compromise of the complete system.
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Fig. 1: Design overview of a generic enclave security archi-
tecture protecting the sensitive services A and B.

III. ENCLAVE SECURITY ARCHITECTURES ON RISC-V

We introduce next the most well-known academic RISC-V
enclave architectures, namely, Sanctum [10], Keystone [20],
TIMBER-V [31] and CURE [2]. We describe their design and
features, and discuss their limitations. The assumed adversary
models are aligned with the model described in Section II. We
summarize our comparison in Table I.

A. Sanctum

In 2016, Costan et al. [10] proposed the Sanctum security
architecture whose high-level design is shown in Figure 2.
Design, Features & Limitations. Sanctum offers enclaves to
protect sensitive services on RISC-V platforms. In Sanctum,
every enclave runs in the user level (as shown in Figure 2)
and comes bundled with a non-sensitive application which
invokes the enclave. The non-sensitive application can also
just contain a code stub whose only purpose is invoking the
enclave. Whenever an enclave is booted, the trusted software
component of Sanctum, called the Security Monitor (SM),
verifies the integrity of the enclaves using local attestation.

In Sanctum, the untrusted OS is utilized to manage the
enclave memory and to provides typical OS services to the
enclaves, e.g., interrupt handling or I/O services. In recent
years, researchers showed that enclave architectures, which
rely on untrusted software for enclave management tasks, are
vulnerable to controlled side-channel attacks [23], [30], [34].
By observing the enclave page tables [34] or by interrupting
enclave execution in a precise manner [30], an adversary can
gather information about the internal state, e.g. control flow,
of the enclave which can then be exploited to extract sensitive
data, e.g. cryptographic key material, from the enclave. In
Sanctum, similar attacks are prevented by storing the enclave
page tables in enclave memory such that they cannot be
directly observed by the OS. Moreover, enclaves are made
aware of when they are interrupted and thus, can implement
mechanisms to detect a suspicious interrupt behavior.



Sanctum implements two mechanisms to protect enclaves
against cache side-channel attacks. Firstly, Sanctum flushes the
L1 cache and Translation Lookaside Buffer (TLB) whenever
a context switch into and out of an enclave is performed.
Thus, an adversary cannot infer information about the internal
enclave state by observing the state of the L1 cache or
TLB. Secondly, the shared L2 cache is partitioned using a
memory page coloring scheme which allows to assign cache
lines exclusively to enclaves. However, the practicality of the
scheme is limited since the assignment of cache lines to
enclaves can only be set during system boot. A modification
during runtime would require to completely rearrange the
memory layout of the enclaves and even the OS.

Another limitation of Sanctum is that its enclaves can
only execute unprivileged user-level code and thus, cannot
contain device drivers. As a result, Sanctum cannot establish
secure communication channels to peripherals which require
unencrypted communication streams, e.g. sensors or GPUs.
Sanctum provides a basic DMA attack protection by restricting
DMA accesses, however, only a single system-wide DMA
region can be defined for all DMA-capable devices.
Hardware Primitives & TCB. Sanctum’s hardware-assisted
security mechanisms are implemented at the Page Table
Walker (PTW) which is part of the Memory Management Unit
(MMU). The security mechanisms enforce that the OS cannot
access any enclave memory and that an enclave cannot access
the OS memory or memory regions of any other enclave by
modifying its own page tables. The isolation is enforced by
preventing a successful address translation of virtual memory
addresses to physical addresses if the issuer of the memory
request is not allowed to access the particular memory ad-
dress. As typical for enclave architectures, all security critical
operations are performed by the trusted software component
(SM). In Sanctum, the SM runs in the machine level of the
RISC-V processor. The basic DMA protection of Sanctum is
implemented by adding two registers to the memory controller.
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Fig. 2: Design overview of Sanctum which provides user-
level enclaves and cache partitioning for the shared L2 cache
through memory page coloring.

B. Keystone
The high-level design of the Keystone [20] security archi-

tecture is shown in Figure 3.
Design, Features & Limitations. In the Keystone security
architecture, enclaves contain software from the user and
supervisor privilege levels, as shown in Figure 3, whereby the
enclave part running in the user-level is called the enclave
app (EApp) and the part running in the supervisor level
the enclave runtime. The enclave app contains the sensitive
application code, whereas the enclave runtime provides typical
OS services to the enclave app, e.g., memory management
and interrupt handling. By including management tasks into
the enclave, Keystone can more easily protect against the
aforementioned controlled side-channel attacks which target
page tables [34] or interrupt handlers [30].

In contrast to Sanctum, Keystone cannot schedule its en-
claves like normal processes since they are not under the
management of the OS. This means whenever an enclave is
started, the OS state must be stored, the current processor
core freed from the control of the OS and the enclave runtime
booted which introduces an additional performance overhead.
From a resource perspective, the enclave runtime (every en-
clave requires an own instance) leads to code duplication on
the system and increases the overall memory consumption.

In theory, Keystone can include device drivers into the en-
clave runtime to establish secure unencrypted communication
channels from enclaves to peripherals. However, for more
complex peripherals, which communicate with the processor
over DMA memory, additional mechanisms are required to
control the DMA accesses to enclave memory, we call this
functionality enclave-to-peripheral binding. Keystone does
not support enclave-to-peripheral binding and cannot protect
enclaves from DMA attacks [22].

When the executed enclaves (EApp + enclave runtime) are
small in size, Keystone can protect them from simple hardware
attacks, e.g. bus snooping, by executing them solely from
a dedicated on-chip scratchpad memory. However, this only
works for small applications since the size of a scratchpad
memory is typically in the area of several hundreds of KB.
Hardware Primitives & TCB. In contrast to Sanctum, Key-
stone does not perform access control inside of the MMU
but instead at a downstream hardware component called the
Physical Memory Production (PMP) unit [13]. As detailed
in the specification, the PMP can be used to define memory
access permissions for the combination of user and supervisor
level software and for the machine level software. Originally
designed to protect the machine level software from the lesser
privileged software, the Keystone authors utilize the PMP to
assign a continuous memory region to each enclave and the
trusted software component, called Security Monitor (SM). All
memory regions not explicitly assigned automatically belong
to the OS. The SM configures the PMP and represents the
software TCB of the system.

Keystone prevents cache side-channel attacks on the en-
claves by implementing a way-based partitioning scheme in
the shared L2 cache which allows to assign cache ways



exclusively to enclaves. However, since always complete cache
ways are assigned, an underutilization of the cache resources
might occur since the unused cache lines of an assigned way
cannot be allocated by any other software component.
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Fig. 3: Design overview of Keystone which provides en-
claves that consist of an user-level enclave app (EApp) and
a supervisor-level runtime.

C. TIMBER-V

The high-level design of TIMBER-V [31], which targets
resource-constraint microcontrollers, is shown in Figure 4.
Design, Features & Limitations. TIMBER-V, in contrast to
Sanctum and Keystone, does not isolate complete applications
inside of enclaves. Instead, TIMBER-V only encapsulates
parts of an application, e.g., a cryptographic library or a single
cryptographic function, inside of its enclaves, called trusted
domain. The rest of the application is called normal domain.
TIMBER-V achieves the separation of the domains in memory
using memory tagging which allows to define very fine-
grained enclaves (we also call them sub-level enclaves) that
might only comprise a few bytes of memory. The separation
between the sub-level enclaves in user level is managed by
a trusted domain called TagRoot which configures TIMBER-
V’s memory tagging hardware. Moreover, the TagRoot is
used for setting up the enclaves (together with the OS) and
provides services to the enclaves, e.g., sealing, attestation and
a communication channel to the respective normal domains
which is established over shared memory.

In theory, device drivers can be included into the TagRoot to
allow enclaves to communicate with peripherals, e.g. sensors,
over secure unencrypted channels. However, by adding more
software to the TagRoot, the design of TIMBER-V diverges
to the high-level security model of ARM’s TrustZone-A [1]
in which trusted applications are managed by a trusted OS. In
recent years, academia has shown multiple times, summarized
by Cerdeira et al. [7], that this trust model largely increases
the attack surface of the system.

The handling of the enclave interrupts is not performed by
the TagRoot but by the OS. Since the enclaves are not aware
of their interruption, TIMBER-V is vulnerable to controlled
side-channel attacks which target the interrupt handling [30].

Cache side-channel attacks are not considered by the authors
of TIMBER-V since they argue that microcontrollers, which
TIMBER-V targets, in general do not include cache memory.
Hardware Primitives & TCB. Memory tagging is implement
in TIMBER-V inside the Memory Protection Unit (MPU)
of the system. The MPU extension achieves not only that
all applications are separated from each other but also that
the normal and trusted domain parts of one applications are
separated. Besides the MPU modifications, a hardware tag
engine is required which verifies every memory access using
the tags stored in memory. For every 32 bit of memory, 2
bit tags are required which leads to an memory overhead of
6.25%. Moreover, custom instructions are introduced which
are needed for checking and manipulating the tags. If protec-
tion from DMA attacks [22] is required, additional tag engines
must be placed at every DMA-capable peripheral.

The software TCB of the system is represented by the
TagRoot, which verifies the MPU configuration set by the OS,
and all software running in the machine level of the processor.
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Fig. 4: Design overview of TIMBER-V which provides sub-
level enclaves on resource-constraint microcontrollers.

D. CURE

The high-level design of the CURE [2] security architecture
is shown in Figure 5.
Design, Features & Limitations. In contrast to the enclave
architectures described before, CURE provides multiple types
of enclaves from which an application developer who wants to
protect his application can choose from. The different enclave
types are shown in Figure 5, whereby EnclaveA represents an
user-level enclave, EnclaveB an user/supervisor-level enclave
and the Security Monitor (SM) a sub-level enclave. The main
advantage of implementing the SM as a sub-level enclave
is that the system TCB gets substantially reduced since all
the security-irrelevant code in the machine level is excluded
from the TCB. By providing different enclave types on one



Enclave Type

Name User-Level User/Supervisor-Level Sub-Level
Dynamic Cache

Side-Channel Resilience
Controlled Side-

Channel Resilience
Enclave-to-Peripheral

Binding
Sanctum [10] ●∗ ○∗ ○∗ ◐∗ ●∗ ○∗

Keystone [20] ○∗ ●∗ ○∗ ●∗ ●∗ ○∗

TIMBER-V [31] ○∗ ○∗ ●∗ ○∗ ◐∗ ○∗

CURE [2] ●∗ ●∗ ●∗ ●∗ ●∗ ●∗

TABLE I: Comparison of academic RISC-V enclave architectures.

platform, there is no need for a developer to adapt his sensitive
application to the features and requirements of a specific
enclave type. Instead, the developer can select the enclave type
which best fits the needs of his sensitive application.

CURE protects user-level enclaves from controlled side-
channel attacks targeting page tables [34] by including the
enclave memory pages in the enclave memory and by verifying
all page table modifications requested by the OS. Regarding
side-channel attacks that target interrupt handlers [30], CURE
allows enclave developers to define trap handlers which are
automatically called after an enclave was interrupted and
the interrupt handled by the OS. Thus, an enclave can use
heuristics to detect an abnormal interrupt behavior.

CURE’s user/supervisor-level enclaves can include device
drivers into their runtime. Together with CURE’s hardware
security mechanisms this allows to assign peripherals exclu-
sively to enclaves (enclave-to-peripheral binding).

CURE introduces a new cache architecture for shared caches
which allows to assign cache ways exclusively to enclaves.
In contrast to Sanctum’s partitioning mechanism, the cache
resources assigned to a particular enclave can be dynamically
changed during runtime. However, as for the partitioning
provided by Keystone, assigning complete cache ways to
enclaves can lead to cache memory underutilization because of
the coarse-grained nature of a cache way. Similar to Sanctum,
CURE protects from cache side-channel attacks on the core-
exclusive cache structures by flushing the L1 cache and TLB
whenever an enclave is entered or exited.
Hardware Primitives & TCB. The key hardware security
mechanism introduced with CURE is the filter engine which
is included into the system bus. The filter engine allows, on the
one hand, to assign memory regions exclusively to enclaves,
and on the other hand, to define for every peripheral whether a
certain enclave is allowed to communicate with it over MMIO.
Moreover, the filter engine adds registers and control logic in
front of all DMA-capable devices to restrict their access to
parts of the memory. Thus, the filter engine enables a secure,
yet unencrypted, communication between enclaves and (DMA-
capable) devices over MMIO and shared DMA memory.

CURE’s software TCB, the SM, is minimal in size since it
only includes the security-relevant code and excludes the com-
modity firmware code typically also running in the machine
level. The SM manages the enclaves and performs all security-
critical operations, e.g., verification of the enclave binaries, key
management or storing the enclave states persistently.

Besides the filter engine and the novel cache architecture,
CURE requires minimal modifications at the RISC-V proces-
sor. In CURE, every enclave is identified by a system-wide

unique ID. All access control operations done in CURE are
performed based on the enclave ID. Thus, a new machine-
level register is added to the processor to store the ID of
the currently executed enclave. Moreover, the bus protocol
(TileLink [28]) is extended by an enclave ID signal to propa-
gate the ID through the complete system, from the processor
over the cache controller up to the filter engine.
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Fig. 5: Design overview of CURE which provides different
types of enclaves, namely, sub-level enclaves (Security Mon-
itor), user-level enclaves (EnclaveA) and user/supervisor-level
enclaves (EnclaveB).

IV. OPEN CHALLENGES

In the following, we discuss open challenges of enclave
security architectures.
Side-channel Resilient Caches. As mentioned, none of the
currently existing industrial enclave architectures [1], [16],
[17] consider side-channel attacks in their threat model. In
contrast, most academic proposals consider cache side-channel
attacks. However, the proposed protection schemes are either
impractical [10] or provide only a coarse-grained allocation of
cache resources to enclaves [2], [20]. Thus, an open challenge
in security research is to design practical and customizable
cache microarchitectures [12], [27], [32] specifically for en-
clave architectures which allow to assign cache resources to
enclaves in a fine-grained manner.
Enclaves on Emerging Platforms. The presented RISC-V
security architectures mainly target platforms ranging from
resource-constrained microcontrollers to more powerful em-
bedded systems, thereby fitting into the main deployment



area of RISC-V processors today. Regarding the resource-
constrained microcontrollers, research should put a bigger
focus on the energy-efficiency of those devices and how
it is influenced by the hardware primitives introduced by
security architectures. Moreover, if RISC-V expands its reach
to large-scale cloud servers, novel enclave architectures need
to be designed that can deal with heterogeneous computing
platforms which might comprise hundreds of processor cores
and a combination of CPUs, GPUs or Tensor Processing Units
(TPUs). Designing enclave architectures that can protect sen-
sitive applications also on platforms which require Network-
on-Chip (NoC) bus architectures to connect a large number of
computing nodes is another open research challenge.
Establish Trust in Hardware. For all enclave architectures
introduced in this paper, the underlying hardware is inherently
trusted. However, also hardware implementations can contain
flaws which might diminish or completely dissolve the security
guarantees of the system. Unfortunately, hardware, unlike soft-
ware, cannot be patched once fabricated in silicon. This means
that the security analysis required at the pre-silicon phase must
be even more rigorous to verify the security of the hardware.
As we have witnessed when conducting the largest inter-
national System-on-Chip (SoC) security competitions from
2018 up to now, called Hack@DAC [8] and Hack@SEC [9],
hardware security analysis is very challenging to achieve in
practice, even with state-of-the-art verification and analysis
techniques. Thus, developing new methods and technologies
to detect vulnerabilities in hardware implementations prior to
fabrication is another important open research challenge.
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