
TyTAN: Tiny Trust Anchor for Tiny Devices

Ferdinand Brasser, Brahim El Mahjoub,
Ahmad-Reza Sadeghi,
Christian Wachsmann

Technische Universität Darmstadt (EC-SPRIDE),
Germany

Patrick Koeberl
Intel Labs

ABSTRACT
Embedded systems are at the core of many security-sensitive
and safety-critical applications, including automotive, in-
dustrial control systems, and critical infrastructures. Ex-
isting protection mechanisms against (software-based) mal-
ware are inflexible, too complex, expensive, or do not meet
real-time requirements.

We present TyTAN, which, to the best of our knowledge,
is the first security architecture for embedded systems that
provides (1) hardware-assisted strong isolation of dynami-
cally configurable tasks and (2) real-time guarantees. We
implemented TyTAN on the Intelr Siskiyou Peak embed-
ded platform and demonstrate its efficiency and effectiveness
through extensive evaluation.

1. INTRODUCTION
Today, millions of embedded systems are used in safety

and security critical applications. Current industrial trends
and initiatives aim to “connect the unconnected” to realize
the Internet of Everything, where embedded systems1 play
the central role. These systems generate, process, and ex-
change vast amount of security and safety critical data as
well as privacy sensitive information, and hence are appeal-
ing targets of various attacks. Recent studies have revealed
many security vulnerabilities in embedded devices [3, 4, 16,
19, 11, 2, 15, 23, 8]. This poses new challenges on the de-
sign and implementation of secure embedded systems that
typically must provide multiple functions, basic security fea-
tures, and real-time guarantees at minimal cost. To ensure
the correct operation of these devices, it is crucial to assure
their integrity, in particular of their code and data.

While most hardware security solutions, such as Trusted
Platform Modules (TPMs) [27], do not scale to embedded

1The term embedded system is widely used for a large variety
of systems ranging from microcontrollers with minimal func-
tionality to quite powerful systems such as smartphones and
enterprise routers [4]. In this paper, we focus on resource-
constrained embedded systems.

.

systems because of their high complexity and costs [28, 26,
18, 14], software-based solutions [9, 22, 21, 12] typically
rely on strong assumptions that are hard to achieve in prac-
tice [1]. On the other hand, approaches that target low-end
embedded devices do not meet the real-time requirements
of many embedded applications, or are highly inflexible, for
instance, they assume a static software configuration and do
not allow dynamic loading of applications at runtime [6, 25,
17, 10]. We elaborate on these proposals later in the related
work section.

Contribution. Our contributions are as follows:

A security architecture for tiny devices. We present TyTAN,
which, to the best of our knowledge, is the first security ar-
chitecture for low-end embedded systems that provides (1) a
hardware-assisted dynamic root of trust, allowing secure
task loading at runtime; (2) secure inter-process communi-
cation (IPC); (3) local and remote attestation; and (4) real-
time guarantees. TyTAN is designed for multi-stakeholder
scenarios and allows for secure execution of mutually dis-
trusting tasks.

Implementation. We implemented TyTAN on Intelr Siskiyou
Peak [20], an architecture intended for deeply embedded sys-
tems.

Evaluation. We evaluated TyTAN’s efficiency and effective-
ness. We show that all of TyTAN’s components are real-time
compliant and demonstrate its applicability to automotive
embedded control systems.

Outline. We introduce the model of TyTAN in Section 2.
We describe TyTAN’s architecture in Section 3, and our im-
plementation in Section 4. We discuss TyTAN’s security in
Section 5, and provide our evaluation results in Section 6.
Eventually, we discuss related work in Section 7 and con-
clude in Section 8.

2. MODEL AND REQUIREMENTS
The model involves the following parties: the device man-

ufacturer M, the device owner O, and multiple task providers
Pi. On embedded systems applications are usually called
tasks. M provides the underlying platform hardware and
the software components which are critical for the correct
operation of TyTAN (marked as trusted software in Fig-
ure 1). Hence, these parts must be trusted by all parties. O
controls the operating system (OS). The OS and the tasks
provided by P (e.g., Task A - D in Figure 1) are mutually
untrusted. All tasks are isolated from each other and secure
tasks are in addition isolated from the OS.

We focus on resource-constrained embedded systems as

Figure 1: TyTAN system architecture

used in many automotive and industrial applications. Ex-
amples are the TI MSP430, ARM Cortex M3, and Intelr

Siskiyou Peak which we use as base platform for TyTAN.
Safety and security critical applications of embedded sys-

tems in, for instance, automotive, require: (1) real-time
guarantees; (2) isolation of system components; (3) dynamic
configuration; (4) techniques for device integrity verification
(attestation); and (5) support for multiple, potentially un-
trusting, stakeholders.

Real-time guarantees. Acting reliably within strict time frames
is highly relevant but not considered by most security archi-
tectures for embedded devices [6, 25, 17].

Isolation. Faults in one system component cannot (directly)
influence other components. Isolation is fundamental to pro-
tect critical components against unintended access by other
(malicious) components.

Dynamic configuration. Tasks (applications) can be dynam-
ically loaded, unloaded, started, and stopped on demand at
runtime, increasing efficiency through better resource uti-
lization. Tasks can be updated, which is necessary to ad-
dress software flaws.

Attestation. While local attestation allows different compo-
nents on the same system to mutually verify their integrity,
remote attestation allows a device to prove the integrity of
its software state to another device.

Multiple stakeholders. Today, embedded devices execute
tasks from multiple, mutually distrusting stakeholders. For
instance, automotive electronic control units often run soft-
ware provided by the component supplier and the car manu-
facturer. While the component supplier requires protecting
its intellectual property and the integrity of its software com-
ponents, the car manufacturer wants to ensure the correct
and reliable operation of its tasks.

3. ARCHITECTURE
TyTAN, see Figure 1, is composed of several components,

as described in the following.

Tasks. TyTAN supports two types of tasks: normal tasks are
isolated from other tasks but accessible to the OS; and secure
tasks that are isolated from all other software including the
OS. Each task t has a unique identifier idt , i.e., the hash
digest of its binary code. Tasks are loadable, unloadable,
and suspendable at runtime.

EA-MPU. TyTAN is based on an Execution-aware Memory
Protection Unit (EA-MPU) [10], a hardware component pro-
viding: (1) memory access control enforcement based on the
code that aims to access a data region, e.g., the stack of a
task can be accessed only by the task itself but no other soft-
ware; (2) each task can be invoked only at a dedicated entry

point; and (3) interrupts are handled such that the mem-
ory access control rules of the EA-MPU are enforced, i.e.,
a (malicious) interrupt handler cannot gain any information
about the state of an interrupted task.

Platform Key. The TyTAN hardware platform comes with
a platform key Kp . Access to this key is controlled by the
EA-MPU and only trusted software components have access
to it. Additional keys can be derivated from Kp , e.g., for
remote attestation or for secure storage.

Real-time OS. TyTAN provides real-time scheduling. It en-
sures that all tasks and system components can be inter-
rupted to allow other pending operations to proceed within
the time frame allocated to them.

Secure boot. TyTAN’s trusted software components (i.e.,
EA-MPU driver, Int Mux, IPC Proxy, RTM task, Remote
Attest and Secure Storage) are loaded with secure boot and
isolated from the rest of the system by the EA-MPU to en-
sure their integrity. These components are not higher priv-
ileged than the OS and only some of them have the same
privileges as the OS (e.g., EA-MPU driver).

Trusted execution. TyTAN provides trusted execution by
isolating secure tasks and trusted software components based
on the access control enforced by the EA-MPU. Each of the
security primitives described in the following is isolated from
all other system components.

EA-MPU driver. The dynamic handling of tasks requires
the EA-MPU to be dynamically configurable. This is per-
formed by the EA-MPU driver, which sets the memory ac-
cess control rules in the EA-MPU when loading or unloading
a secure task. The EA-MPU rules for the static components
(including the EA-MPU driver itself) are set during secure
boot.

Attestation. To prove the integrity of a task t to a local or
remote verifier, the Root of Trust for Measurement (RTM)
task computes a cryptographic hash function over the binary
code of each created task. This hash digest serves as identity
of the task idt . To meet real-time requirements, the RTM
task must be interruptible during the hash calculation. By
isolating t ’s memory and preventing its execution, TyTAN
ensures that t is immutable while the RTM task computes
idt . This guarantees the reliable verification of idt .

The authenticity of idt and its origin is crucial. TyTAN
supports different authentication methods for local and re-
mote attestation. The EA-MPU ensures that only the RTM
task can modify idt . For local attestation, idt can be used as
both identifier and attestation report of t . Remote attesta-
tion on TyTAN uses Message Authentication Codes (MAC)
along with an attestation key Ka to prove the authenticity
of idt to a remote verifier. Ka is derivated from Kp and only
accessible to the Remote Attest task.2

Secure inter-process communication (IPC). TyTAN enables
secure communication between tasks via an IPC proxy, which
forwards the message m from the sender S to the receiver
R. S copies m and the identity idR of R to the CPU reg-
isters and invokes the IPC proxy by an software interrupt.3

The IPC proxy determines R’s memory location and writes
m and idS to R’s memory. This implicitly authenticates
m and idS since the EA-MPU ensures that only the IPC

2In [17] a key derivation scheme is shown which allows the
creation of individual attestation keys per P.
3Provisioning S with idR is left to the task developer.

proxy can write to R’s memory. To efficiently transfer large
amount of data between tasks, the IPC proxy sets up shared
memory that is accessible only to the communicating tasks.

Secure storage. Secure storage is realized as a secure task.
For each task a task key Kt = HMAC(idt |Kp) is generate
which is bound to the task identity (idt) and the platform
(Kp). Tasks interact with the secure storage task over secure
IPC which allows the identification of the requesting task.
All data a task sends to the secure storage task get encrypted
with Kt . Since idt is included in Kt a task that tries to access
data stored before will only succeed if it has the same idt as
the task that stored the data, i.e., if it is the same tasks.

4. IMPLEMENTATION

Hardware platform.
We implemented TyTAN on the Intelr Siskiyou Peak ar-

chitecture [20], a low-power, 32-bit core intended for embed-
ded applications. Siskiyou Peak uses a flat, physical address-
ing model and interacts with peripherals using memory-
mapped input/output (MMIO).

We extend the static EA-MPU usages presented in TrustLite
[10] with dynamic configuration of memory access control
rules. We implemented TyTAN on a Xilinx Spartan-6 FPGA
running at 48 MHz.

Operating System.
TyTAN uses the FreeRTOS4 real-time operating sys-

tem. We ported FreeRTOS to Siskiyou Peak and extended
FreeRTOS with dynamic handling of secure tasks and sup-
port for the EA-MPU. Our extensions to FreeRTOS do not
violate real-time requirements: (1) multi-tasking support,
(2) priority-based pre-emptive scheduling, (3) bounded ex-
ecution time for primitives, (4) high-resolution real-time
clock, (5) special alarms and time-outs, (6) real-time queu-
ing, and (7) delaying of processes (interrupt/resume task
execution) [24]. Specifically, we extended FreeRTOS’s pre-
emptive scheduler to support secure tasks and designed all
software components of TyTAN to be interruptible, or to
have an upper bound on their execution time.

Dynamic task handling. Loading tasks at runtime requires:
(1) allocation of memory for the new task; (2) loading the
task into memory and preparing its stack: FreeRTOS op-
erates on physical memory and the base address of a task
changes depending on which memory regions are free at load
time, making relocation necessary; and (3) invocation of the
task, i.e., adding it to the OS scheduler.

To perform those steps we extended FreeRTOS with an
ELF5 loader. ELF supports relocatable binaries and encodes
all information required for relocation in ELF file headers.

Unloading a task requires deleting it from the OS sched-
uler and reclaiming its memory. Task suspending requires
the OS scheduler to maintain a list of tasks that are loaded
but should not be executed at the moment.

Secure tasks. Secure tasks are isolated from other software
components, i.e., the memory of a secure task can be ac-
cessed only by the task itself and trusted system compo-
nents. The OS is not trusted and cannot access the task’s
memory and the EA-MPU enforces that secure tasks are in-

4RTOS available under GPL (http://www.freertos.org)
5Executable Linking Format

voked only at a dedicated entry point to prevent code reuse
attacks.6 We adapted FreeRTOS to consider these restric-
tions when interrupting and (re)starting secure tasks.

Interrupting secure tasks. Tasks are frequently interrupted,
e.g., to react to an event like an arriving network package.
Whenever an interrupt occurs, the hardware exception en-
gine stops the current task and executes a predefined rou-
tine, called interrupt hander, which reacts to the interrupt
and resumes the task afterwards. After the interrupt, the
interrupted task should continue execution as if it had never
been interrupted,7 which requires the interrupt handler not
to change the state of the task. The task’s state consists
of the content of the task’s memory and the CPU registers
(known as the context of the task). While the task’s memory
typically remains unchanged, the CPU registers are used by
the interrupt handler and must be saved. The instruction
pointer (EIP) and flags register (EFLAGS) are saved by the
exception engine to the stack of the interrupted task. For
normal tasks, all other CPU registers are saved by the inter-
rupt handler to the task’s stack. Since the context and stack
of a secure task may contain sensitive information, the un-
trusted OS may not be able to access this data. TyTAN uses
the trusted interrupt multiplexer (Int Mux) to securely save
the context of a task to it’s stack before control is passed to
the interrupt handler. Alternatively, saving the task’s con-
text to its stack can be implemented in hardware, reducing
latency at the cost of additional hardware.

(Re)starting secure tasks. When a normal task is resumed
after it has been interrupted, its context is loaded from the
task’s stack to the CPU registers. The registers saved by the
hardware (EIP and EFLAGS) are restored by a dedicated
CPU instruction, which also continues to execute the task
from the point where it has been interrupted. When a new
task is created, the OS prepares the stack of this task as if
it had been executed before and was interrupted. Then the
OS resumes the task and loads the initial context of the task
to the CPU registers.

For secure tasks there are two restrictions: (1) the OS can-
not access the stack of a secure task and restore its context;
and (2) secure tasks can be invoked only with a dedicated
entry routine. This entry routine detects whether the task
has been (re)started or was invoked to receive a message
and acts accordingly. TyTAN provides this information in a
CPU register, which is checked by the entry routine. When
the task has been (re)started, the entry routine restores the
task’s context and continues the task’s execution. Since the
entry routine is similar for all secure tasks, it is automati-
cally included by the TyTAN tool chain and does not need
to be implemented by the task programmer.

RTM task. When a task t is loaded, the RTM task computes
the hash digest of the code, static data, and initial stack
layout of t .8 This measurement is the basis for local and re-
mote attestation on TyTAN. The integrity of the RTM task
is protected by secure boot and the EA-MPU. As described
before, during the loading of t it is subject to relocation. A
measurement of a “relocated” task would only be verifiable
with additional information, e.g., the memory location at

6Code reuse attacks pose a severe threat on diverse plat-
forms including embedded systems [7].
7If the task requests a service from the OS via an interrupt
this has of course an effect on the task but this is intended.
8We use SHA-1 but other hash algorithms can also be used.

which the task is loaded. To provide a position-independent
measurement for tasks, the RTM task temporarily reverts
the changes made during relocation before computing the
hash digest.

Loading tasks. A new task t is loaded as follows: (1) the OS
allocates memory for t ; (2) loads t into memory performing
relocation; (3) prepares the stack; then (4) the EA-MPU is
configured to protect the memory of t ; (5) t is measured;
and (6) the OS is notified to schedule t .

Secure IPC. The sender S loads the message m and the
identity idR of the receiver R (i.e., the measurement9 of R)
into the CPU registers and issues an interrupt. This invokes
the IPC proxy, which obtains the origin of the interrupt
from the hardware and determines S’s identity idS . The
memory location of R is stored by the RTM task, which
maintains a list of the identities of all loaded tasks and their
memory addresses. Then the IPC proxy writes m and idS
to the memory of R. For synchronous communication, the
IPC proxy branches to R, whose entry routine processes m.
For asynchronous communication, the IPC proxy continues
executing S andR processes m the next time it is scheduled.

Interrupts. Interrupts are handled by different interrupt
handlers, which are determined by the interrupt descriptor
table (IDT). To ensure the correct use of interrupt handlers,
the integrity of the IDT is protected by the EA-MPU. The
register pointing to the IDT is static and cannot be modified
to install another (malicious) IDT.

5. SECURITY CONSIDERATIONS
The primary goal of TyTAN is to assure the integrity

of critical software components and secure tasks. This is
achieved through secure boot and hardware-enforced mem-
ory access control.

Another important property of TyTAN is real-time execu-
tion of tasks, which relies on the availability of the platform.
There are different attack vectors that an external adversary
can leverage to undermine the availability of TyTAN: Denial
of Service (DoS), and compromising the platform’s software
in order to disturb the operation of the system.

Denial of service attacks are domain specific (e.g., network
flooding if a network interface exists, or disconnection the
power supply if the device is physically accessible), and no
general solution exists to prevent DoS attacks.

To disturb the operations of the system the adversary
needs to gain control over the OS or a trusted software com-
ponents, e.g., the EA-MPU driver. Normal tasks as well as
secure task cannot disturb the operations of other compo-
nents of TyTAN, due to the fact that they are isolated, and
bound in their use of system recourse (e.g., execution time
or memory). Hence, the adversary who controls a task10

cannot disturb the availability of the platform. Only if the
adversary can exploit a vulnerability in the OS to gain higher
privileges he can succeed in his attack.

6. EVALUATION
We evaluate the performance and applicability of TyTAN

for embedded control systems in automotive environments.

9For enhanced performance, our implementation uses only
the first 64 bits of the hash digest.

10The attacker might be a task provider (P) how deployed a
malicious task, or the attacker compromised a benign task

Figure 2: Use-case scenario

Table 1: Use-case evaluation results
Task t1 t2 t0

Before loading t2 1.5 kHz — 1.5 kHz
While loading t2 1.5 kHz — 1.5 kHz
After loading t2 1.5 kHz 1.5 kHz 1.5 kHz

To validate TyTAN’s real-time properties, we evaluate the
performance of each of its components.

Use-case Evaluation.
Our use case concerns a simulated adaptive cruise control

system, where an embedded device controls the speed of a
vehicle depending on the accelerator pedal position and the
speed of a vehicle in front (measured by a radar sensor).
The device runs three secure tasks (see Figure 2). Task t1
permanently monitors the accelerator pedal position sensor.
Task t2 is loaded on demand when adaptive cruise control
is activated by the driver and then monitors the radar sen-
sor. Task t0 controls the speed of the vehicle based on the
data provided by t1 and t2 (t0 implements the engine control
software). When cruise control is activated, t2 is loaded into
memory, which involves relocation, preparing the stack, and
measuring t2. All these operations take 27.8ms, which is
longer than the time available between two scheduling cy-
cles of t0 and t1. Hence, loading t2 could block t0 and t1 if
the loading procedure was not interruptible. Our results in
Table 1 show that despite frequently scheduling of t0 and t1
they still meet their deadlines while t2 is loaded, which is
crucial for safe and precise control of the vehicle’s speed.

Performance of TyTAN Components.
We evaluated the performance of TyTAN, including all

components that could have an impact on its real-time be-
havior, namely: (1) interrupt handling; (2) secure task cre-
ation; and (3) secure IPC.

We present all results in clock cycles since the clock-speed
of a platform is variable and depends on many factors that
are not related to TyTAN.

Interrupt handling. The interrupt handler: (1) saves the
context, (2) wipes the CPU registers, and (3) branches to the
routine handling the interrupt. Table 2 compares the results
with the unmodified FreeRTOS. Continuing the execution
of an interrupted task requires branching to this task and
restoring its context. Table 3 shows the evaluation results
for restoring a secure task and compares them to FreeRTOS.

Creating tasks. Creating a secure task t requires: relocating
t ; configuring the EA-MPU for t ; and measuring t . Table 4
shows the performance results for creating task.11

Relocation. The performance of relocation depends on the
number n of addresses changed in task t by the relocation
process. Table 5 shows the results for different n, which

11With 9 relocations and a memory size of 3, 962 Bytes.

Table 2: Performance of saving the context of a secure task
(in clock cycles)

Store
context

Wipe
registers

Branch Overall Overhead

38 16 41 95 57

Table 3: Performance of restoring the context of a secure task
(in clock cycles)

Branch Restore Overall Overhead

106 254 384 130

indicate that the runtime of relocation is linear in n.

EA-MPU configuration. Configuring the EA-MPU requires:
finding a free EA-MPU slot for the new access control rule;
checking the new rule against existing EA-MPU rules (i.e.,
that protected regions do not overlap); and writing the rule
to the EA-MPU (see Table 6).

Task measurement. The time required to measure a task
t depends on: the memory size of t ; the number of mem-
ory addresses in t changed by relocation; and the number
of interruptions of the RTM task during measuring t . Ta-
ble 7 shows the performance results for measuring a task. It
shows that the runtime (T) of measuring a task depends on
the number of blocks (b) and the number of addresses (a)
to handle: T ≈ 4300 clock cycles + (b · 3900 clock cycles) +
100 clock cycles + (a · 500 clock cycles).

The measurement is not required for normal tasks.

Secure IPC. The communication performance depends on
the runtime of: the IPC proxy (1, 208 clock cycles); and
the entry routine of the receiver processing the message
(116 clock cycles). Hence, the overall performance of the
sceure IPC mechanism is 1, 324 clock cycles

Memory consumption.
The memory consumption of TyTAN’s OS is the amount

of memory used when no task is loaded. Table 8 compares
the memory consumption of TyTAN and FreeRTOS.

Secure tasks implement an entry routine to handle inter-
rupts, which slightly increases the memory consumption of
secure tasks compared to normal tasks.

7. RELATED WORK
There is a rich body of literature on security architec-

tures for embedded systems, mainly due to the broad range
of devices considered as embedded systems [4, 3]. On the
upper end are the Intelr and ARMr architectures, which
are widely used in mobile devices (e.g., smartphones and
tablets). For these systems, a variety of security architec-
tures have been proposed: software-based isolation and vir-
tualization [13]; trusted computing based on secure hard-
ware (e.g., Trusted Platform Module (TPM) [27]); and pro-
cessor architectures providing secure execution [28, 26, 18,
14]. However, all these approaches are too complex and ex-
pensive for low-end embedded systems. Security solutions
for such devices are typically based on hardware-enforced
isolation of security-critical code and data from other soft-
ware on the same platform. The most prominent exam-
ples include, SMART [6], SPM [25], SANCUS [17], and
TrustLite [10]. SMART protects the integrity of only one
specific task with read-only memory, which does not allow

Table 4: Performance of creating a secure task (in clock cy-
cles)

Task
type

Relo-
cation

EA-
MPU

RTM Overall Over-
head

Secure 3,692 225 433,433 642,241 437,380
Normal 3,692 225 0 208,808 3,917

Table 5: Performance of relocation for different numbers of
addresses changed by relocation (in clock cycles)

of addresses Runtime (min) Runtime (avg)

0 37 37
1 673 703
2 1,346 1,372
4 2,634 2,711

code changes after deployment. The integrity protected task
may not be interrupted rendering SMART incompatible for
real-time systems. SPM provides hardware-enforced isola-
tion of tasks by granting access to a task’s data region only
to the task itself. However, these tasks have a fixed mem-
ory layout and cannot be interrupted. Further, the task
measurement of SPM is performed in hardware, i.e., it is
non-interruptible and at the same time dependent on the
memory size of the measured task, which violates real-time
system requirements. SANCUS extends SPM with a mecha-
nism to generate and manage cryptographic secrets of tasks
but inherits SPM’s limitations, e.g., no secure interrupts.
The secure interrupt mechanism introduced for Sancus aims
at making the platform suitable for real-time systems [5].
But this mechanism does not fulfil all requirements for a
real-time system as identified in [24], e.g., bounded execu-
tion time for primitives.

TrustLite generalizes the concept of SPM [25] and SMART
[6] and supports interrupting tasks. However, TrustLite re-
quires all software components to be loaded and their iso-
lation to be configured at boot time. In contrast to these
works TyTAN provides higher flexibility by providing dy-
namic loading and unloading of multiple tasks at runtime,
secure IPC with sender and receiver authentication, and
real-time scheduling.

8. CONCLUSION
We presented TyTAN, the first comprehensive security

architecture for low-end embedded systems that provides
(1) dynamic loading and configuration of secure tasks,
(2) secure IPC, and (3) real-time guarantees. We imple-
mented TyTAN on the Intelr Siskiyou Peak architecture
and demonstrated its effectiveness and efficiency through ex-
tensive evaluation.

Future work includes extending TyTAN with a mecha-
nism to update tasks at runtime (i.e., without stopping and
restarting them) to meet the high availability requirements
of embedded applications, and new hardware-assisted run-
time attacks detection.

Acknowledgement
The authors thank the anonymous reviewers. This work has
been co-funded by the German Science Foundation as part of
project S2 within the CRC 1119 CROSSING, EC-SPRIDE,
and the Intel CRI for Secure Computing.

Table 6: Performance of configuring EA-MPU depending on
the position of the first free slot in the EA-MPU with 18 slots
in total (in clock cycles)

Free slot
position

Finding
free slot

Policy
check

Writing
rule

Overall

1 76 824 225 1,125
2 95 824 225 1,144
18 399 824 225 1,448

Table 7: Performance of measuring a task depending on its
memory size and number of memory addresses changed by
relocation (in clock cycles)

Memory size Runtime

1 block 8, 261
2 blocks 12, 200
4 blocks 20, 078
8 blocks 35, 790

of addresses Runtime

0 114
1 680
2 1,188
4 2,187

9. REFERENCES
[1] F. Armknecht, A.-R. Sadeghi, S. Schulz, and

C. Wachsmann. A security framework for the analysis
and design of software attestation. In ACM
Conference on Computer & Communications Security
(CCS). ACM, 2013.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, and S. Savage. Comprehensive
experimental analyses of automotive attack surfaces.
In USENIX Security Symposium. USENIX
Association, 2011.

[3] A. Costin, J. Zaddach, A. Francillon, and
D. Balzarotti. A large-scale analysis of the security of
embedded firmwares. In USENIX Security Symposium.
USENIX Association, 2014.

[4] A. Cui and S. J. Stolfo. A quantitative analysis of the
insecurity of embedded network devices: Results of a
wide-area scan. In Annual Computer Security
Applications Conference (ACSAC). ACM, 2010.

[5] R. de Clercq, F. Piessens, D. Schellekens, and
I. Verbauwhede. Secure interrupts on low-end
microcontrollers. In Application-specific Systems,
Architectures and Processors (ASAP), 2014 IEEE
25th International Conference on, 2014.

[6] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik.
SMART: Secure and minimal architecture for
(establishing a dynamic) root of trust. In Network and
Distributed System Security Symposium (NDSS), 2012.

[7] A. Francillon and C. Castelluccia. Code injection
attacks on harvard-architecture devices. In Proceedings
of the 15th ACM Conference on Computer and
Communications Security. ACM, 2008.

[8] A. G. Illera and J. V. Vidal. Lights off! The darkness
of the smart meters. In BlackHat Europe, 2014.

[9] R. Kennell and L. H. Jamieson. Establishing the
genuinity of remote computer systems. In USENIX
Security Symposium. USENIX Association, 2003.

[10] P. Koeberl, S. Schulz, A.-R. Sadeghi, and
V. Varadharajan. TrustLite: A security architecture
for tiny embedded devices. In European Conference on
Computer Systems (EuroSys). ACM, 2014.

[11] K. Koscher, A. Czeskis, F. Roesner, S. Patel,
T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage.
Experimental security analysis of a modern
automobile. In IEEE Symposium on Security and
Privacy. IEEE, 2010.

[12] Y. Li, J. M. McCune, and A. Perrig. VIPER:
Verifying the integrity of peripherals’ firmware. In
Conference on Computer and Communications

Table 8: Memory consumption of TyTAN’s OS

FreeRTOS TyTAN Overhead

215, 617 Bytes 249, 943 Bytes 15.92 %

Security (CCS). ACM, 2011.
[13] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,

V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In IEEE Symposium on
Security and Privacy. IEEE, 2010.

[14] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar. Innovative instructions and software
model for isolated execution. In Workshop on
Hardware and Architectural Support for Security and
Privacy (HASP). ACM, 2013.

[15] C. Miller and C. Valasek. A survey of remote
automotive attack surfaces. In BlackHat USA, 2014.

[16] D. M. Nicol. Hacking the lights out. Scientific
American, 305, 2011.

[17] J. Noorman, P. Agten, W. Daniels, R. Strackx,
A. Van Herrewege, C. Huygens, B. Preneel,
I. Verbauwhede, and F. Piessens. Sancus: Low-cost
trustworthy extensible networked devices with a
zero-software trusted computing base. In USENIX
Security Symposium. USENIX Association, 2013.

[18] E. Owusu, J. Guajardo, J. McCune, J. Newsome,
A. Perrig, and A. Vasudevan. OASIS: On achieving a
sanctuary for integrity and secrecy on untrusted
platforms. In ACM Conference on Computer &
Communications Security (CCS). ACM, 2013.

[19] J. Pollet and J. Cummins. Electricity for free — The
dirty underbelly of SCADA and smart meters. In
BlackHat USA, 2010.

[20] J. Rattner. Extreme scale computing. ISCA Keynote,
2012.

[21] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla. Pioneer: Verifying code integrity and
enforcing untampered code execution on legacy
systems. In ACM Symposium on Operating Systems
Principles (SOSP). ACM, 2005.

[22] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT: Software-based attestation for embedded
devices. In IEEE Symposium on Security and Privacy.
IEEE, 2004.

[23] A. Soullie. Industrial control systems: Pentesting
PLCs 101. In BlackHat Europe, 2014.

[24] J. A. Stankovic and R. Rajkumar. Real-time operating
systems. Real-Time Systems, 28(2-3), 2004.

[25] R. Strackx, F. Piessens, and B. Preneel. Efficient
isolation of trusted subsystems in embedded systems.
In Security and Privacy in Communication Networks.
Springer, 2010.

[26] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. AEGIS: Architecture for tamper-evident
and tamper-resistant processing. In International
Conference on Supercomputing (ICS). ACM, 2003.

[27] Trusted Computing Group (TCG). Website.
http://www.trustedcomputinggroup.org, 2011.

[28] J. Winter. Trusted computing building blocks for
embedded Linux-based ARM TrustZone platforms. In
ACM Workshop on Scalable Trusted Computing
(STC). ACM, 2008.

