
SafeTEE: Combining Safety and Security on
ARM-based Microcontrollers

Martin Schönstedt
Technical University of Darmstadt

Darmstadt, Germany
martin.schoenstedt@sanctuary.dev

Emmanuel Stapf
Technical University of Darmstadt

Darmstadt, Germany
emmanuel.stapf@sanctuary.dev

Ferdinand Brasser
Technical University of Darmstadt

Darmstadt, Germany
ferdinand.brasser@sanctuary.dev

Ahmad-Reza Sadeghi
Technical University of Darmstadt

Darmstadt, Germany
ahmad.sadeghi@trust.tu-darmstadt.de

Patrick Jauernig
Technical University of Darmstadt

Darmstadt, Germany
patrick.jauernig@sanctuary.dev

Abstract—From industry automation to smart home, embedded
devices are already ubiquitous, and the number of applications
continues to grow rapidly. However, the plethora of embedded
devices used in these systems leads to considerable hardware
and maintenance costs. To reduce these costs, it is necessary
to consolidate applications and functionalities that are currently
implemented on individual embedded devices. Especially in mixed-
criticality systems, consolidating applications on a single device
is highly challenging and requires strong isolation to ensure the
security and safety of each application. Existing isolation solutions,
such as partitioning designs for ARM-based microcontrollers, do
not meet these requirements.

In this paper, we present SafeTEE, a novel approach to enable
security- and safety-critical applications on a single embedded
device. We leverage hardware mechanisms of commercially avail-
able ARM-based microcontrollers to strongly isolate applications
on individual cores. This makes SafeTEE the first solution to
provide strong isolation for multiple applications in terms of
security as well as safety. We thoroughly evaluate our prototype
of SafeTEE for the most recent ARM microcontrollers using a
standard microcontroller benchmark suite.

Index Terms—safety, embedded, ARM, TrustZone, TEE

I. INTRODUCTION

Embedded devices play a key role in numerous application
areas like automotive, industry 4.0 or smart home. The number
of embedded devices is steadily increasing which is exemplified
in the automotive industry. Electronics now account for over
40% of the production cost of a car, a figure that has doubled
in just ten years [1].

Today, embedded devices are often used to run a single
application. This exclusivity ensures proper isolation both for
safety-critical applications (e.g., airbag or braking system) and
security-critical applications (e.g., vehicle access or remote
software update) but increases the production cost. Yet keeping
costs low is an important goal across all industries.

To minimize cost, a more cost-effective approach to integrate
the increasing number of applications and services is required,
which enables the consolidation of multiple applications on a
single embedded device in order to reduce the overall number
of embedded devices. Additionally, the communication between
applications is accelerated when they are consolidated since

all communication happens on the same chip. However, when
applications of mixed criticality share computing and memory
resources, a number of challenges arise, as strong isolation
between the applications needs to be guaranteed.

For security-critical applications, a shared system results in
an increased attack surface. If one application is compromised,
the system’s shared nature potentially allows an attacker to also
access the sensitive data of other applications on the system.
Thus, a strong isolation between applications and their data
must be provided by the system. Besides preventing run-time
attacks on applications, mechanisms must be provided that
allow the verification of the current state of an application, e.g.,
by using secure boot or local/remote attestation capabilities.

For safety-critical applications, a shared system can lead to
interference between applications. A failure in one (non-safety-
critical) application might lead to a fatal error, preventing the
operating system (OS) from correctly executing a safety-critical
application. In this case, it is not possible for the safety-critical
application to mitigate the fatal failure since it is caused by
a different application which does not adhere to high safety
standards. Executing applications on individual processor cores
does not solve the problem completely since all cores typically
still share system resources, e.g., all cores have access to the
same physical memory, and thus, interference might still occur.

To solve these challenges and enable mixed-criticality sys-
tems on ARM-based microcontrollers, an architecture is needed
which fulfills both the requirements of safety-critical and
security-critical applications. In recent years, multiple designs
where proposed by academia to approach this problem, but
no approach meets all requirements to provide isolation for
safety and security applications sufficiently. While designs built
for single-core devices fail to meet the isolation required by
safety-critical applications [2], [3], designs with multi-core
options only provide unidirectional isolation [3], [4]. The only
previously proposed design to enable mixed-criticality systems
on ARM-based processors relies on hardware-virtualization
features, which are not available on microcontrollers [5].

In this paper, we propose SafeTEE, the first architecture



which combines safety and trusted execution environments
(TEEs) to enable mixed-criticality systems on a single em-
bedded device. SafeTEE isolates applications on ARM-based
microcontrollers (containing ARM Cortex-M processors) which
are most widely used for small embedded devices. SafeTEE
targets multi-core devices and assigns cores exclusively to
applications. In order to prevent any interference between
applications, and to meet strong safety requirements, Safe-
TEE leverages the TrustZone-M technology available on ARM
Cortex-M processors in a novel way to dynamically configure
the memory regions each processor core is allowed to access.
Moreover, SafeTEE still allows to use the TrustZone-M features
in their intended way to offer additional security services to
applications and thus, also meets the requirements of security-
critical applications. We implemented a prototype of SafeTEE
on a simulated ARM MSP2+ board and evaluated our prototype
using the embench benchmarking suite [6]. We compare Safe-
TEE to an unmodified system and show that SafeTEE achieves
a 2.5% higher benchmark score on average.

II. BACKGROUND ON ARM TRUSTZONE-M
In this section, we introduce the TrustZone technology for

ARM Cortex-M processors since it is a key technology in
SafeTEE’s design. TrustZone is the prevalent technology used
to protect security-critical applications on today’s ARM-based
systems, first in Cortex-A processor and recently on the smaller
Cortex-M processors [7], [8]. On an abstract level, TrustZone-
M, depicted in Figure 1, splits the system into two separated
worlds: A secure world and a normal world. The secure world
is strongly isolated from the normal world, which prevents
applications running in the normal world from manipulating
or interfering with the secure world.

A Cortex-M processors’ two execution modes called thread
mode and handler mode are available both in the secure and
normal world. The execution state of a processor is defined
through a combination of the world the processor currently
executes in and the execution mode.

In a TrustZone-enabled microcontroller, a security state is
assigned to each memory address. TrustZone prevents access
to secure memory addresses from the normal world. This
guarantees not only the isolation of secure data and memory-
mapped devices, but also prevents normal-world applications
from jumping to code belonging to a secure application.

Even though the normal and secure world are strongly sep-
arated, secure-world applications can provide security services
to normal-world applications by using a third security state,
called non-secure callable (NSC). The normal world can call
secure functions whose entry point is within NSC memory.

The assignment of a security state to a memory region
is done using the Secure Attribution Unit (SAU) hardware
component, which is included in every TrustZone-enabled
ARMv8-M processor. The SAU can define up to eight memory
regions of configurable size. These memory regions can either
be marked non-secure (belonging to normal the world) or NSC.
All other memory regions are implicitly assigned the secure
state (belonging to the secure world). The SAU configuration
registers can only be modified from within the secure world.

Thread
Mode

Handler
Mode

App

OS

App

Trusted 
Software

Secure WorldNormal World

Core

Security 
Services

Fig. 1. A typical TrustZone-M system on a single processor core, running an
OS with its applications in the normal world and trusted software and security
services in the secure world.

Figure 1 shows a typical TrustZone setup on a single-core
device. Applications are executed in the normal world, using
the handler mode for privileged parts of an OS or real time
operating system (RTOS) and the thread mode for unprivileged
applications. Security services like attestation are running in
the thread mode of the secure world. The secure-world handler
mode contains the trusted software, which is the first software
running after boot. The trusted software configures the SAU
and other system resources before any normal-world software
is executed. Moreover, the trusted software enables the imple-
mentation of further security features like secure boot.

III. SYSTEM AND ADVERSARIAL ASSUMPTIONS

In the following section, we describe the system we target
in SafeTEE, and we detail our assumed adversary model.

A. System Assumptions

SafeTEE targets ARM microcontrollers that contain multiple
Cortex-M cores. The availability of multi-core chips is a
practical assumption since the number of processor cores per
chip has been steadily increasing on ARM-based chips in the
last decade; an example of a platform implementing dual-core
Cortex-M processors is the ARM Musca Board [9]. We further
assume that each processor core is TrustZone-M enabled.

We assume that SafeTEE is used to consolidate applications
of mixed-criticality on one embedded device. Some applica-
tions are assumed to be safety critical, while others are security-
critical. Taking an example from the manufacturing industry,
the safety-critical application could be represented by the au-
tomation software of an industrial robot and the security-critical
application by software which transmits sensitive system data
from the robot to a server using encrypted communication.

We assume that all safety-critical applications on the sys-
tem are built in compliance with industry standards, such as
IEC 61508 [10], which defines generic functional safety guide-
lines for electrical, electronic, and programmable electronic
systems, or industry specific standards, such as ISO 26262 [11]
(automotive) or IEC 61511 [12] (manufacturing industry). For
the security-critical applications we do not assume that they are
built in accordance to such standards.

B. Adversary Model

Our adversary model adheres to the one commonly assumed
for TEE architectures in general and for TrustZone-based
architectures in particular [7], [13]–[17]. We assume a strong



software-only adversary that can compromise all software in
the normal world (thread and handler mode). The software in
the secure world however, which represents the system’s trusted
computing base (TCB) and which is provided by the system
vendor, is inherently trusted and verified with secure boot.

The goal of the adversary is to leak secret data from security-
sensitive applications and/or the TCB, or to provoke failures
of safety-critical applications. The adversary is able to inject
own code into the OS running in handler mode, and thus,
also able to deploy malicious applications. Unlike most other
works, we also consider denial of service (DoS) attacks, which
the attacker might use to starve a safety-critical application.
As attack vectors for DoS attacks we consider manipulation
of the safety-critical application’s memory and attacks on the
processor core which is executing the safety-critical application,
e.g., by provoking a fatal error to prevent execution.

We assume the underlying hardware to be correct and
trusted, and hence, do not consider attacks that exploit hardware
flaws [18], [19]. Further, we assume that the attacker does not
have physical access to the device, and thus, fault injection
attacks [20] and physical side-channel attacks [21], [22] are
out of scope. As standard for TEE architectures, SafeTEE
does not protect from memory corruption vulnerabilities inside
a security-critical application but prevents their exploitation
from compromising other applications on the system. Since
SafeTEE targets ARM-based microcontrollers which typically
do not include caches or direct memory access (DMA) capable
devices, we do not consider cache side-channel attacks [23],
[24] or DMA attacks [25].

IV. DESIGN

In this section, we first show the high-level design of
SafeTEE. Next, we give details on the underlying hardware
primitives used in the design and the work flow of setting up
a safety- or security-critical application.

A. High-level Overview

SafeTEE provides a novel design for a security and safety
architecture for ARM microcontrollers which meets the safety
and security requirements of mixed-criticality systems.

In SafeTEE, whose high-level design is shown in Figure 2
exemplarily for a dual-core setup, all applications run on
dedicated physical processor cores in the normal world, whether
they are safety critical (NWP 0) or security critical (NWP 1).
Each application, which we call a normal-world partition
(NWP), can thus utilize both processor modes, the thread
and handler mode. Dedicating each core to only one NWP
is not considered a drawback, as SafeTEE aims to consolidate
applications else implemented on individual embedded devices.
Running all applications unprivileged in the normal world
keeps the secure world usable for security services, e.g., key
management or remote attestation. In SafeTEE, an NWP can
access security services the same way they are used on existing
TrustZone-enabled microcontrollers. Thus, existing security-
critical applications can easily be ported to SafeTEE.

TrustZone’s secure world can only provide a single protected
environment, thus, applications running in the secure world

NWP 0

Task

RTOS

Task
Thread

Mode

Handler
Mode

NWP 1

Task

OS

Task
Security 
Services

Normal World Secure WorldNormal World

Core 0 Core 1

Trusted 
Software

Fig. 2. SafeTEE on a dual-core device, highlighting different usage possibilities
for NWPs. The first core and its NWP execute an RTOS. The second core
executes an NWP running a general-purpose OS with access to security services
managed by the trusted software, executing in the same core’s secure world.

cannot be strongly isolated from each other, which is a much-
debated general limitation of TrustZone [14], [15], [26], [27]. In
SafeTEE, we therefore extract all security-critical applications
from the secure world and run them in unprivileged NWPs
in the normal world. The secure world only contains security
services and SafeTEE’s firmware (trusted software in Figure 2)
provided by the system vendor.

In Figure 2, we show that only the security-critical applica-
tion (NWP 1) has access to the depicted security services. The
safety-critical application (NWP 0) does not require security
services during runtime and thus, never switches to the secure
world. As its execution is never interrupted, the safety-critical
application can meet its timing requirements in the same way as
an implementation on an exclusive microcontroller. Instead of
including an RTOS in an NWP which executes multiple tasks,
safety-critical applications can also be run bare-metal.

Since every NWP runs exclusively on a single core or
multiple cores, the NWP’s computing resources are physically
isolated from each other. This is necessary for enabling safety-
critical applications, as they require strong partitioning to
prevent interference between applications. Partitioning of mem-
ory resources is achieved by utilizing TrustZone’s hardware
primitives which we describe next.

B. Hardware Primitives

Each NWP’s memory is stored in a separate partition consist-
ing of multiple memory regions, memory-mapped IO (MMIO)
devices are exclusively assigned to an NWP. SafeTEE defines
memory access policies, so that every NWP can only access
its own memory regions. Partitioning ensures the integrity
and confidentiality of memory belonging to an NWP, meeting
the requirement for security-critical applications and also for
safety-critical applications for which partitioning is also rec-
ommended by industry standards [10].

In order to create and isolate an NWP, the SAU hardware
component is used, which is included in every TrustZone-
enabled Cortex-M processor. In Figure 3, we show in more
detail how the SAU is configured for each processor core and
how the general boot process and setup phase of SafeTEE work.
Each core’s SAU defines only the memory regions belonging
to the NWP running on that core as non-secure (belonging
to the normal world). Thus, NWP 0 can only access the
memory regions defined by the SAU on core 0 (NWP Code,
Data and Device as shown in Figure 3). Memory accesses to



NWP 0

Task

RTOS

Task
Thread

Mode

Handler
Mode

Bootloader

1

3

NWP 1

Task

OS

Task

4

Firmware

Normal World Secure World Secure WorldNormal World

4

Core 0

Firmware

2

Core 1

Core 0

SAU

NWP 0 
Code

FW 
Code

NWP 1 
Code

NWP 0 
Data

FW 
Data

NWP 1 
Data

NWP 0 
Device

FW 
Device

NWP 1 
Device

NWP 0 
Device

NWP 0 
Code

Secure Memory
NWP 0 
Data

NWP 0 
Device

Secure Memory
Sec. 

Mem.
NWP 0 
Device

Sec. 
Mem.

Secure Memory
NWP 1 
Code

Secure Memory
NWP 1 
Data

NWP 1 
Device

Sec. 
Mem.

Memory
Layout

Core 1

SAU

Security 
Services

3

Fig. 3. The setup steps for SafeTEE shown on a dual-core system. First,
the bootloader is executed on core 0, afterwards the firmware boots the second
core. On both cores the firmware (FW) then configures the SAU regions before
starting the NWPs.

addresses belonging to NWP 1 are prevented. Based on core 0’s
SAU configuration, NWP 1’s memory regions and all memory
regions of the secure world (FW Code, Data and Device) are
regarded as secure memory. If it is accessed from NWP 0,
TrustZone triggers a SecureFault [7].

The configuration of the SAU is part of the SafeTEE setup
phase. Its steps are highlighted in Figure 3. After an initial
secure bootloader has loaded and verified all images (including
all safety- and security-critical applications), a small firmware
is executed to configure the system 1 . The firmware and
bootloader together form the trusted software (Figure 2). As
the initial boot process can be performed on a single core,
other cores only start after the bootloader is finished. Booting
the other cores is done by the firmware 2 . The next steps
are executed on all cores. First, the firmware configures each
core’s SAU 3 . The firmware can also assign MMIO devices
to a particular NWP (NWP 0 Device, NWP 1 Device) or the
secure world (FW Device). The final step of the system setup
is to start the NWPs 4 . After the setup phase is complete, the
firmware is responsible for managing the security services.

V. SECURITY CONSIDERATIONS

SafeTEE provides isolation for applications encapsulated in
NWPs. For each NWP, a memory region is configured to be
exclusively assigned to it, i.e., an NWP’s private memory region
is only accessible by that NWP and the secure world. The
secure world is trusted (cf. Section III-B). Thus, the memory
of an NWP provides integrity and confidentiality for all data
and code of an NWP during run time.

The initial integrity and confidentiality of NWP’s code and
data is ensured by the secure loading procedure of SafeTEE,
i.e., NWPs are loaded by the trusted software (firmware + boot-
loader) at boot time. Before any NWP can execute, the memory
isolation for the NWPs is configured and SafeTEE’s memory
isolation is active before any untrusted NWP component is
allowed to execute, hence, a NWP can never access another
NWP’s code or data. This prevents memory manipulation as
an DoS attack vector.

NWPs are bound to dedicated processor cores, thus, the
actions of one NWP can only impact the execution of that

NWP itself, e.g., invoking security services will cause that
NWP’s processor to switch to the secure world. All other
NWPs can execute independently on their own processor cores,
thus, SafeTEE prevents interference between NWPs. All re-
sources that are shared between processor cores are handled
by SafeTEE’s firmware, preventing for instance inter-processor
interrupts. Through this strict resource separation, SafeTEE
provides DoS protection for the attack vectors mentioned in
Section III-B. Even if the adversary has control over the handler
mode of one NWP, the adversary cannot impact the execution
of any other NWP on the platform.

VI. IMPLEMENTATION

We implemented a prototype of SafeTEE on an ARM-based
microcontroller. Two currently available hardware platforms by
ARM Ltd. meet the requirements described in Section III-A.
Both implement the SSE-200 subsystem [28] with two Cortex-
M33 processors supporting TrustZone. The Musca-B1 test chip
board and the Arm MPS2+ FPGA prototyping board [29],
where the AN521 FPGA image implements the subsystem on
the prototyping board [30]. A white paper presented in 2013 by
ARM Ltd. already contained design guidelines for a multi-core
microcontroller design [31]. While ARM Ltd. has been leading
the way for dual-core microcontrollers, other vendors have also
introduced dual-core Cortex-M-based boards [32].

Unfortunately, physical versions of the suited boards could
not be obtained on the market. However, the MPS2+ with
AN521 image can be simulated using QEMU, which is a
widely-used open-source tool for system emulation. In our
prototype implementation, we use Zephyr v2.5 [33] and
multiple tasks for representing the safety- and security-critical
applications (NWPs) which run in the normal world of the
MPS2+ AN521 board.

In order to achieve SafeTEE’s memory partitioning design,
the secure software has to run on both processor cores and
configure the correct SAU regions of each core. We modified
the Trusted Firmware-M (TF-M) v1.2.0 to use it as the firmware
in our prototype. The TF-M performs the secure boot and
system initialization, including the SAU configuration on each
core. Moreover, the TF-M manages the security services. We
implement a key management security service in our prototype
which can be used by an NWP. The security service stores a
key for a one-time-pad in its secure memory. When an NWP
calls the security service with a plaintext for encryption, the
service returns the ciphertext while keeping the key secured.

VII. EVALUATION

In our evaluation, we first verify whether SafeTEE provides
the required isolation between multiple applications running on
one system. Then, we evaluate SafeTEE’s performance using
the microcontroller benchmark suite embench [6].

For the isolation evaluation, we implement a setup were one
application performs a failure and then observe whether it im-
pacts other applications on the system. We compare SafeTEE,
running two applications in own NWPs, with two variants of
a system that does not follow our design approach. In the first
variant, we implement each application as an own thread within



TABLE I
RESULTS OF EVALUATION TESTS

Legacy OS
single-core

Legacy OS
AMP

SafeTEE
NWPs

Fault Isolation × X X

Memory Isolation × × X

geometric mean

0%

1%

2%

3%

4%

5%

6%

Fig. 4. Relative increase of benchmark score when using SafeTEE.

Zephyr, running on a single core. As a second variant, we use an
asymmetric multiprocessing (AMP) implementation of Zephyr
to run each application on an exclusive processor core. We
evaluate two scenarios which test the possibility of interference
between the applications. We show the results in Table I.

a) Scenario - Isolation for Safety: In the first scenario,
we purposely generated a fatal error in one application to
see if the other application is still able to execute afterwards.
Isolation from failures in other applications is necessary for
safety-critical applications. As visible in Table I, isolation is
only achieved by the AMP dual-core system and SafeTEE. The
results show that processor core sharing should be avoided for
safety-critical applications.

b) Scenario - Isolation for Security: The second scenario
is relevant for both safety- and security-critical applications.
In a shared system, applications should not be able to access
other application’s memory. For security-critical applications,
this could result in attacks on the confidentiality and integrity
of sensitive data. While confidentiality is not a big concern
for safety-critical applications, data integrity must be ensured.
Manipulations might corrupt the application’s state and lead to
incorrect behavior. In the context of our evaluation, one applica-
tion tries to modify data belonging to the other application. As
shown in Table I, only SafeTEE can provide adequate memory
protection. The other systems both allowed reading and writing
data belonging to the other application. When using SafeTEE,
memory accesses are prevented, a fault is generated and the
application’s execution is halted. This is useful because illegal
memory accesses are only expected by damaged or malicious
applications. Both of which should not continue their execution
after an illegal behavior is observed.

c) Performance Evaluation: For evaluating the perfor-
mance of SafeTEE, we performed ten runs of the benchmarks
provided by embench v1.0 [6], as used in related work [34],
on the same QEMU simulation setup both with and without
SafeTEE. The relative differences between the benchmark
scores of both runs are presented in Figure 4. SafeTEE’s runs
achieved better benchmark scores than runs without SafeTEE.

On average, SafeTEE increases the benchmark scores by 2.5%
geometric mean. However, we attribute the increased scores to
internal optimizations in the simulation process of a dual-core
QEMU setup. As SafeTEE only produces a constant overhead
(during system setup), the run time of NWPs does not differ
from systems without SafeTEE. Hence, neither a performance
increase nor decrease are expected on physical boards.

VIII. RELATED WORK

In this section, we present and compare relevant existing
approaches for partitioning on ARM-based platforms and high-
light why none of them meet the requirements for mixed-
criticality systems on embedded devices.

While our design is built for embedded systems with Cortex-
M processors, a variety of partitioning designs exist for the
more powerful Cortex-A platforms. The architectures of the
different ARM processor families share similarities, so general
design principles could be applied to and compared between
Cortex-A and Cortex-M processors.

A. TrustZone- and MPU-based Isolation

One design possible on all processors with TrustZone uses
the isolation between normal and secure world to isolate one
application in the secure world, while another one is executed in
the normal world. This is implemented by LTZVisor for Cortex-
A [4]. Similar designs for Cortex-M devices exist [3], [34].
However, switching between secure world and normal world
on the very same core is problematic in real-time scenarios, as
the scheduling deadlines cannot be enforced any more when in
secure world. Diverging from this concept and assigning secure
and normal world to individual cores can address this issue, but
is inflexible. Since TrustZone only offers two isolated domains,
this approach would be limited to two applications even if more
cores were available. Using the secure world for an application
further prevents usage of TrustZone for actual security services.

MultiZone is a security architecture for Cortex-M sys-
tems [2]. Applications are scheduled by the MultiZone kernel
and executed on a single core. Instead of virtualization, Multi-
Zone uses the Memory Protection Unit (MPU) available on the
processors to restrict the memory to the currently scheduled
application. However, MultiZone’s processor sharing implies
that a crashing application impacts the other applications,
making it unsuitable for safety-critical scenarios. Further, using
the MPU for isolation also limits applications to using only the
thread mode, which is a limitation SafeTEE does not have.

B. Virtualization-based Isolation

An alternative are virtualization-based approaches on Cortex-
A processors, e.g., Hafnium [35] or Siemens’ Jailhouse [36].
These approaches allow the execution of applications on indi-
vidual logical cores. While Jailhouse targets the normal world,
Hafnium can be used for normal-world and secure-world vir-
tualization (SEL-2) to isolate applications in virtual machines
(VMs). These VMs can be scheduled dynamically, managed by
a primary VM. Thus, the designs can only guarantee availability
of the primary VM. This prioritization is not suitable for the



use cases targeted by this work’s design. The static design of
SafeTEE instead guarantees availability of all applications.

Bao [5] is a static, low-overhead, processor-exclusive design
for Cortex-A processors. Similar to SafeTEE, Bao also targets
safety-critical applications. Like other designs for Cortex-A
processors, Bao relies on virtualization for isolation between
applications. Porting the design of Bao to embedded Cortex-M
systems is not possible because the smaller processors lack the
necessary virtualization features.

To conclude, existing designs for Cortex-M systems do
not meet the requirements of safety-critical applications, and
thus, are not suited for mixed-criticality systems targeted by
SafeTEE. In contrast, Cortex-A approaches either use temporal
isolation and cannot meet safety requirements, or rely on
a hypervisor—which is not present on Cortex-M processors.
SafeTEE is the first architecture for Cortex-M system which
addresses these issues and enables isolation of mixed-criticality
applications on a single embedded device.

IX. CONCLUSION

We presented the design and implementation of SafeTEE,
the first architecture to offer strong isolation for consolidation
of safety-critical applications on a single platform, thus, en-
abling mixed-criticality systems on Cortex-M microcontrollers.
SafeTEE prevents interference between safety- and security-
critical applications by encapsulating them in normal-world
partitions (NWPs), which are assigned to individual processor
cores, have separated memory regions assigned and exclusive
access to devices. Our evaluation shows that the performance of
applications isolated within NWPs is not negatively impacted.

ACKNOWLEDGMENT

We thank our anonymous reviewers for their valuable and
constructive feedback. This work was funded by the Federal
Ministry of Education and Research in the StartUpSecure
funding program (16KIS1417).

REFERENCES

[1] Deloitte, “Semiconductors – the Next Wave,” press release. [Online].
Available: https://www2.deloitte.com/cn/en/pages/about-deloitte/articles/
pr-semiconductors-the-next-wave-2019.html

[2] S. Pinto and C. Garlati, “Multi zone security for arm cortex-m devices,”
2020. [Online]. Available: https://hex-five.com/wp-content/uploads/2020/
02/Multi-Zone-Security-White-Paper-20200224.pdf

[3] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtualiza-
tion on trustzone-enabled microcontrollers? voilà!” in RTAS, 2019.

[4] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “Ltzvisor:
Trustzone is the key,” in ECRTS, 2017.

[5] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao: A
lightweight static partitioning hypervisor for modern multi-core embed-
ded systems,” in NG-RES, 2020.

[6] Free and Open Source Silicon Foundation. Embench: A Modern
Embedded Benchmark Suite. [Online]. Available: https://www.embench.
org/

[7] Arm Ltd., Arm TrustZone Technology for the ARMv8-M Architecture.
[Online]. Available: https://developer.arm.com/documentation/100690/
0201/

[8] P. Burr. (2018). [Online]. Available: https://community.arm.com/
developer/ip-products/processors/trustzone-for-armv8-m/b/blog/posts/
nordic-announce-first-cortex-m33-based-chip-with-trustzone

[9] Musca-B1 Test Chip Board, Arm Ltd. [Online]. Avail-
able: https://developer.arm.com/tools-and-software/development-boards/
iot-test-chips-and-boards/musca-b-test-chip-board

[10] International Electrotechnical Commission. Functional safety of
electrical/electronic/programmable electronic safety-related systems
- Part 1: General requirements. [Online]. Available: https:
//webstore.iec.ch/publication/5515

[11] International Organization for Standardization. ISO 26262-1:2018(en)
Road vehicles – Functional safety – Part 1: Vocabulary. [Online].
Available: https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en

[12] International Electrotechnical Commission. Functional safety - Safety
instrumented systems for the process industry sector - ALL PARTS.
[Online]. Available: https://webstore.iec.ch/publication/5527

[13] Intel, “Intel Software Guard Extensions Programming Reference,” https:
//software.intel.com/sites/default/files/managed/48/88/329298-002.pdf,
2014.

[14] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo:
Using verification to disentangle secure-enclave hardware from software,”
in SOSP, 2017.

[15] F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf, “Sanctuary:
Arming trustzone with user-space enclaves,” in NDSS, 2019.

[16] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in USENIX Security, 2016.

[17] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf, “CURE: A Security Architecture with CUstomiz-
able and Resilient Enclaves,” in USENIX Security Symposium, 2021.

[18] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, 2014.

[19] A. Tang, S. Sethumadhavan, and S. Stolfo, “Clkscrew: exposing the perils
of security-oblivious energy management,” in USENIX Security, 2017.

[20] I. Biehl, B. Meyer, and V. Müller, “Differential fault attacks on elliptic
curve cryptosystems,” in CRYPTO, 2000.

[21] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in CRYPTO, 1996.

[22] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer Science & Business Media, 2008.

[23] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of AES,” in RSA Conference, 2006.

[24] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack.” in USENIX Security, 2014.

[25] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neumann,
S. W. Moore, and R. N. Watson, “Thunderclap: Exploring vulnerabilities
in operating system iommu protection via dma from untrustworthy
peripherals.” in NDSS, 2019.

[26] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice: Hardware-
assisted isolated computing environments on mobile devices,” in DSN,
2015.

[27] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He, “Rustee: developing
memory-safe arm trustzone applications,” in Annual Computer Security
Applications Conference, 2020, pp. 442–453.

[28] Arm Ltd., Arm® CoreLink™ SSE-200 Subsystem for Embedded -
Technical Reference Manual. [Online]. Available: https://developer.arm.
com/documentation/101104/0100/

[29] Arm MPS2+ FPGA prototyping board, Arm Ltd. [Online]. Avail-
able: https://developer.arm.com/tools-and-software/development-boards/
fpga-prototyping-boards/mps2

[30] Arm Ltd., Application Note AN521 SMM-SSE-
200 for MPS2+, 2017. [Online]. Available:
https://developer.arm.com/-/media/Arm%20Developer%20Community/
PDF/DAI0521A example sse200 subsystem for v2m mps2.pdf

[31] J. Yiu and I. Johnson, “Multi-core microcontroller design with cortex-m
processors and coresight soc,” ARM Ltd., Tech. Rep., 2013.

[32] NXP Semiconductors. i.MX RT1170 Crossover MCU Family - First
GHz MCU with Arm Cortex-M7 and Cortex-M4 Cores. [Online]. Avail-
able: https://www.nxp.com/products/processors-and-microcontrollers/
arm-microcontrollers/i-mx-rt-crossover-mcus/:i.MX-RT1170

[33] Zephyr Project members and individual contributors. Zephyr Project.
[Online]. Available: https://docs.zephyrproject.org

[34] D. Oliveira, T. Gomes, and S. Pinto, “utango: an open-source tee for the
internet of things,” arXiv preprint arXiv:2102.03625, 2021.

[35] Linaro Ltd. (2021). [Online]. Available: https://www.trustedfirmware.
org/projects/hafnium/

[36] Siemens AG. Jailhouse - Linux-based partitioning hypervisor. [Online].
Available: https://github.com/siemens/jailhouse


